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ABSTRACT
Climate change-driven coral disease outbreaks have led to widespread declines in

coral populations. Early work on coral genomics established that corals have a

complex innate immune system, and whole-transcriptome gene expression studies

have revealed mechanisms by which the coral immune system responds to stress and

disease. The present investigation expands bioinformatic data available to study

coral molecular physiology through the assembly and annotation of a reference

transcriptome of the Caribbean reef-building coral, Orbicella faveolata. Samples

were collected during a warm water thermal anomaly, coral bleaching event and

Caribbean yellow band disease outbreak in 2010 in Puerto Rico. Multiplex

sequencing of RNA on the Illumina GAIIx platform and de novo transcriptome

assembly by Trinity produced 70,745,177 raw short-sequence reads and 32,463

O. faveolata transcripts, respectively. The reference transcriptome was annotated

with gene ontologies, mapped to KEGG pathways, and a predicted proteome of

20,488 sequences was generated. Protein families and signaling pathways that

are essential in the regulation of innate immunity across Phyla were investigated

in-depth. Results were used to develop models of evolutionarily conserved Wnt,

Notch, Rig-like receptor, Nod-like receptor, and Dicer signaling. O. faveolata is a

coral species that has been studied widely under climate-driven stress and disease,

and the present investigation provides new data on the genes that putatively regulate

its immune system.
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INTRODUCTION
Coral reefs are experiencing a dramatic decline in coral cover and reef biodiversity, reports

of which have been documented as early as the 1970s (Alemu & Clement, 2014; Altizer

et al., 2013; Antonius, 1973; Bastidas et al., 2012; Bruno et al., 2007; Ducklow & Mitchell,

1979; Glynn, Peters & Muscatine, 1985; Glynn, 1983; Harvell et al., 1999; Tracy et al., 2015;

Weil & Rogers, 2011; Weil, Smith & Gil-Agudelo, 2006). Climate change-driven stress can

lead to disease outbreaks by shifting coral-associated microbial communities from

symbiont and commensal-dominated to pathogen-dominated (Bourne et al., 2009;

Rosenberg et al., 2007), and the molecular and cellular responses of coral to disease and

environmental stress are well established (Ocampo et al., 2015; Palmer & Traylor-Knowles,

2012; Pinzón et al., 2015;Weiss et al., 2013). The basic model of coral immune responses to

disease involves the migration of pluripotent immunocytes, also known as amoebocytes,

to physical wounds and disease lesions; the production of cytotoxic reactive oxygen

species; the production of antioxidants to reduce self-harm; the accumulation of melanin

as a barrier to pathogen invasion; and the production of antimicrobial compounds to

regulate commensal microbiota (Mydlarz et al., 2008; Palmer, Modi & Mydlarz, 2009;

Tchernov et al., 2011; Vidal-Dupiol et al., 2011; Weis, 2008). Failure to overcome an

infection leads to the manifestation of lesions and tissue mortality that are associated with

molecular and cellular signatures of apoptosis (Ainsworth et al., 2007; Anderson &

Gilchrist, 2008).

Next Generation Sequencing (NGS) technologies promise to reveal the genetic

mechanisms that control the coral immune system on a whole-genome and whole-

transcriptome scale. The versatility of NGS allows for the analysis of samples collected in

situ and can thus be used to study physiological responses to natural disease and climate

stress events. Several investigations have used NGS to identify putative immunity genes

that are differentially expressed under stress and disease (Barshis et al., 2013; Burge et al.,

2013; Libro, Kaluziak & Vollmer, 2013; Ocampo et al., 2015; Palumbi et al., 2014;

Pinzón et al., 2015; Traylor-Knowles & Palumbi, 2014;Weiss et al., 2013).Orbicella faveolata

is an important Caribbean and Atlantic reef-building coral. It has experienced recent

population declines and is classified as a threatened species under the federal endangered

species act (NOAA, 2014). In particular, this species has been severely impacted by

coral bleaching and Caribbean Yellow Band Disease (CYBD) across its geographic range

(Borger & Colley, 2010; Bruckner, 2012; Bruckner & Hill, 2009;Weil, Cróquer & Urreiztieta,

2009a; Weil et al., 2009b; Weil & Rogers, 2011). To better understand the biological

mechanisms of this decline, transcriptomics has been used to define changes in gene

expression of this coral and commensal microbiota in response to environmental stress

during larval development, the establishment of symbiosis, and the maintenance of

homeostasis (Aranda et al., 2012; Borger & Colley, 2010; Closek et al., 2014; Cróquer et al.,

2013; Desalvo et al., 2008; Kimes et al., 2010; Pinzón et al., 2015; Roder et al., 2014; Schwarz

et al., 2008; Sunagawa et al., 2009; Voolstra et al., 2009).

Most recently, Pinzón et al. (2015) used NGS to track temporal changes in gene

expression of O. faveolata through a warm water thermal anomaly and bleaching event in

Anderson et al. (2016), PeerJ, DOI 10.7717/peerj.1616 2/30

http://dx.doi.org/10.7717/peerj.1616
https://peerj.com/


2010 in Puerto Rico. The present RNA-Seq-based investigation sampled Caribbean Yellow

Band-Diseased (CYBD), bleached and asymptomatic colonies of O. faveolata during the

same event. A reference transcriptome was assembled, annotated, and translated into a

predicted proteome. Protein families and signaling pathways that were represented in the

transcriptome but that have not been studied previously in the context of coral

immune responses to stress and disease were selected for in-depth analysis. Phylogenetic

analysis uncovered novel homologues of the Wnt protein family in the O. faveolata

transcriptome, the signaling pathway of which is involved in immune cell differentiation

and migration. Domain architectures for novel O. faveolata Dicer-like proteins, function

in small RNA expression and antiviral immunity, are compared to putative homologues

conserved across phyla. Finally, coral-specific Nod-like receptor, Rig-like receptor and

Notch signaling pathways are illustrated to support future research on the study

intracellular pathogen sensing and wound healing in corals. The results of this work

expand current bioinformatic resources available for O. faveolata and present an in-depth

analysis of evolutionarily conserved gene sets involved in the regulation of coral innate

immunity.

METHODS
Sample collection
A concurrent thermal anomaly, coral bleaching event and Caribbean yellow band disease

outbreak occurred in 2010 in Puerto Rico. This event provided a unique opportunity to

sample colonies of O. faveolata affected by multiple environmental stressors that are

known to induce innate immune responses (Mydlarz et al., 2009; Pinzón et al., 2015). Six

samples (approximately 25 cm2) from four colonies were collected on a single dive at 10 m

depth in October 2010 on Media Luna reef in La Parguera, Puerto Rico (17�56.091 N,

67�02.577 W). Samples were collected under a permit issued by the Department of

Natural Resources of Puerto Rico to the Department of Marine Sciences at the University

of Puerto Rico at Mayaguez. Reefs in this region experienced ten degree-heating weeks at

the time of sample collection. Degree-heating week is a remote sensing metric that

estimates accumulated thermal stress in corals during sea surface temperature anomalies

(Gleeson & Strong, 1995), and is reported by the National Oceanic and Atmospheric

Administration. Five different health conditions were sampled: bleached (sample 1) and

asymptomatic tissue (sample 2) of a partially bleached colony; asymptomatic tissue

(sample 3) and lesion tissue (samples 4 and 5) from a CYBD-affected colonies; and tissue

from a completely asymptomatic colony (sample 6) (Supplemental Information 1). The

conditions represented by samples 3 and 4 have not been used for NGS by any previously

reported investigation. Photographic examples of each disease condition are presented in

Fig. 1. Within one hour of collection and storage at ambient temperature in seawater,

tissue samples were transported to the Department of Marine Sciences on Isla Magueyes,

flash frozen in liquid nitrogen, photographed while on dry ice, and stored at −80 �C.
It was assumed that colonies sampled were non-clonal given their large distances of

separation (>10 m) and low clonal levels (3.5%) previously documented for the same

species on the same reef (Severance & Karl, 2006).
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RNA extraction, sequencing, and de novo transcriptome assembly
The area of each tissue sample was estimated from photographs scaled with

millimeter precision using ImageJ software (Schneider, Rasband & Eliceiri, 2012). The

ratio of the sample area to volume of Trizol (Life Technologies, CA, USA) was the same for

each sample: 2.0 mL of Trizol was added to every 1.00 cm2 of sample tissue in 50 ml

capped tubes. Tissue was homogenized by vigorous shaking until skeletons were

completely denuded. A neutralization reaction occurs between the calcium carbonate

skeleton of the coral and the acidic Trizol, so 1 to 5 ml of 6 M hydrochloric acid were

added to each sample to minimize DNA contamination of the aqueous phase on the

addition of chloroform. For each sample, 700 ml of the aqueous phase was loaded

onto and spun through a single RNeasy column, and an on-column DNA digestion

Figure 1 Representative images of colonies sampled in the present study. (A) Asymptomatic.

(B) Caribbean yellow band-diseased. (C) Partially bleached colonies. (D) Completely bleached colonies.

(E) Caribbean yellow band-diseased and bleached. Photos by E. Weil.
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step was performed using DNase according to the manufacturer’s protocol (Qiagen,

Velno, Netherlands). RNA was eluted from the column with nuclease-free water, and

RNA quality and concentration were verified by 2% denaturing agarose gel

electrophoresis and a NanoDrop spectrophotometer (Thermo Scientific, Waltham, MA,

USA), respectively.

Total RNA was sent for mRNA multiplex sequencing on the Illumina GAIIx platform

(Illumina Inc, San Diego, CA, USA) according to standard protocols of the genomic core

facility at the Scripps Research Institute in Ft. Pierce, Florida, USA. All samples were

sequenced in multiplex on two lanes of an Illumina flow cell. Raw sequence reads from

each sample are available on the NCBI Short Read Archive under Bioproject

PRJNA236103 and accession numbers for each sample are reported in Supplemental

Information 1. From 70,745,177 raw sequence reads of 72 bases in length, adaptor

sequences and low-quality bases were trimmed and clipped using cutadapt (Martin,

2011), which resulted in 59,114,519 reads with a mean length of 67 bases (standard

deviation of 5 bases). Raw reads were trimmed and clipped to optimize sequence quality

based on results of RNA-SeQC analysis (DeLuca et al., 2012). The quality of the data used

for sequence assembly before and after processing is reported as a supplementary figure

(Supplemental Information 2). The Trinity software suite was chosen for de novo

assembly of theO. faveolata transcriptome using 59,114,519 processed sequence reads and

default parameters (Grabherr et al., 2011; Haas et al., 2013).

Generation of the Orbicella faveolata reference transcriptome
To identify coral host and microbial sequences in the metatranscriptome, a series BLASTn

alignments were conducted in parallel. For the first series, transcripts assembled by Trinity

were aligned to transcripts previously reported for the photosynthetic endosymbiont,

Symbiodinium spp. (Bayer et al., 2012; Shoguchi et al., 2013). Hits with an e-value less than

1E-3 were removed. For the second series, transcripts assembled by Trinity were aligned to

O. faveolata expression sequence tags (EST) (E-value cutoff of 1E-6), Acropora digitifera

mRNA sequences (E-value cutoff of 1E-3) (Shinzato et al., 2011), Nematostella vectensis

mRNA sequences (E-value cutoff of 1E-3) (Putnam et al., 2007), and Hydra

magnipapillata mRNA sequences (E-value cutoff of 1E-3) (Chapman et al., 2010).

Transcripts with hits lower than the cutoff were assigned as O. faveolata in origin.

Sequences downloaded for this analysis from their respective sources are provided as a

supplementary file (Supplemental Information 3). Sequences that had significant hits to

both Symbiodinium and Cnidarian sequences in both parallel analyses underwent a

second-round of filtering using the classifier for metagenomic sequences (CLaMS). The

complete genome of N. vectensis and whole transcriptome of Symbiodinium were used as

training sets (Pati et al., 2011). Sequences that were binned as Symbiodinium only or

both Symbiodinium and Cnidarian in origin were removed, and sequences that were

binned as Cnidarian only were retained in the O. faveolata reference transcriptome.

The resulting O. faveolata-specific reference transcriptome is provided as a compressed

supplementary file (Supplemental Information 4a). A predicted proteome was generated

using TransDecoder, a package within the Trinity software suite (Haas et al., 2013).
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The predicted proteome contains 20,488 sequences and is provided as a supplementary

file (Supplemental Information 4b).

Transcriptome annotation and pathway analysis
To assess sequence accuracy of the de novo reference transcriptome, assembled transcripts

were aligned to O. faveolata Expressed Sequence Tags (ESTs) in NCBI. O. faveolata ESTs

have been submitted to NCBI by various sources. The sequences downloaded and used

here are provided as a supplementary file (Supplemental Information 5). Transcriptome

annotation was conducted using a combination of methods. Gene ontologies and

EMBL/InterProScan protein motifs were assigned using BLASTx alignments on the

BLAST2GO platform, which extracts annotations from best hits to non-redundant

protein sequences with a maximum e-value of 1E-3 (Boratyn et al., 2013; Conesa et al.,

2005; Quevillon et al., 2005). Taxonomic identities of best-hit sequences were extracted for

a post-hoc assessment of sequence contamination in the O. faveolata-specific reference

transcriptome. Transcripts were also annotated with KEGG Orthologues (KO) using

default settings for the KEGG Automatic Annotation Server (KAAS) with a minimum

BLASTscore of 60 (Moriya et al., 2007). To determine the completeness of theO. faveolata

transcriptome, KEGG KAAS annotations were conducted in parallel with mRNA

sequences from six other Cnidarians: N. vectensis, H. vulgaris, Porites astreoides,

A. millepora, A. digitifera, and P. damicornis (Chapman et al., 2010; Hemmrich et al., 2012;

Kenkel, Meyer & Matz, 2013; Moya et al., 2012; Pinzón et al., 2015; Putnam et al., 2007;

Shinzato et al., 2011; Traylor-Knowles et al., 2011). The reference transcriptome reported

by Pinzón et al. (2015) was also annotated with KEGG KAAS in parallel for direct

comparisons to the present data set.

Identification and analysis of putative immunity genes, proteins,
and pathways
Correct open reading frames and domain architectures for predicted protein sequences

were verified by hmmscan in the HMMER web server (Finn, Clements & Eddy, 2011). For

phylogenetic analysis of predicted Wnt protein sequences, assignment to a specific Wnt

family member was based on phylogenetic tree construction and clustering with

previously described Wnt proteins for N. vectensis (Kusserow et al., 2005). Whole-length

sequences were aligned by MUSCLE (Edgar, 2004), conserved regions were curated using

Gblocks (Talavera & Castresana, 2007), maximum likelihood phylogenies were estimated

using PhyML with 100 bootstraps and the Dayhoff substitution model (Dayhoff,

Schwartz & Orcutt, 1978), and trees were constructed using TreeDyn (Chevenet et al.,

2006). This pipeline was executed using the Phylogeny.fr platform (Dereeper et al., 2008).

Immune signaling pathways were constructed by mapping assigned KO terms to KEGG

pathway maps. Pathways were modified to illustrate the presence or absence of essential

signaling components in theO. faveolata transcriptomes reported here and by Pinzón et al.

(2015). Components of the miRNA and siRNA pathway gene list were selected based

components reported to be conserved across invertebrates, including Cnidarians (Ding &

Voinnet, 2007; Moran et al., 2013).
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RESULTS AND DISCUSSION
The present investigation expands the bioinformatic resources available for the study of

Orbicella faveolata and its physiological responses to stress and disease. The reference

transcriptome generated here was annotated with gene ontologies, KEGG orthologies, and

KEGG pathways. Immune cell development, migration, and intracellular microbial

sensing pathways were emphasized to highlight aspects of the coral immune system that

remain poorly characterized to date. Phylogenetic and domain architecture analyses

revealed several new members of the Wnt and Dicer-like protein families, and pathway

analysis revealed significant coverage of gene sets for Notch, Nod-like receptor, and

Rig-like receptor pathways. Together, the results of this work provide new bioinformatic

data for O. faveolata and an in-depth analysis of evolutionarily conserved aspects of the

coral innate immune system.

Transcriptome assembly and quality
The metatranscriptome sequences assembled by Trinity included 35,967 and 47,760

transcripts that were identified by BLASTn alignments asO. faveolata and Symbiodinium in

origin. However, 3504 transcripts were identified as both coral and Symbiodinium by

CLaMS analyses. Those sequences were removed thus producing an O. faveolata-specific

transcriptome that contains 32,463 sequences. BLASTx alignment of these sequences to

non-redundant protein sequences in SwissProt by BLAST2GO revealed most frequent

hits to N. vectensis followed by other metazoans (Fig. 2). This provided a post hoc

confirmation that contaminating sequences were successfully removed from the

O. faveolata reference transcriptome. The size of the reference transcriptome is similar

to previous studies that have used the Illumina GAII platform, which report between

33,000 and 48,000 unique coral transcripts (Barshis et al., 2013; Libro, Kaluziak & Vollmer,

2013). The GC content of the reference transcriptome is 44%, which is comparable to

previous reports for corals (Sabourault et al., 2009; Soza-Ried et al., 2010; Vidal-Dupiol

et al., 2013). Sequence accuracy was high with reference transcriptome sequences sharing

96% identity with correspondingO. faveolata ESTs in NCBI (Supplemental Information 6).

The N50 was 1736 bp, which is comparable to recent studies that produced de novo

coral transcriptomes (Barshis et al., 2013; Burge et al., 2013; Lehnert, Burriesci & Pringle,

2012; Libro, Kaluziak & Vollmer, 2013; Moya et al., 2012; Pinzón et al., 2015; Pooyaei

Mehr et al., 2013; Shinzato, Inoue & Kusakabe, 2014; Sun et al., 2012). This value is low

compared to the most recent sequencing efforts for corals, but this is likely an indication of

the low number of total sequence reads rather than sequence quality. High quality of short

reads is demonstrated by RNA-SeQC results, which compare the raw sequence reads to

trimmed and clipped sequences used as the input for assembly by Trinity (Supplemental

Informations 1 and 2). Collectively, these results demonstrate that the methods used were

sufficient to assemble an accurate de novo reference transcriptome for O. faveolata.

Transcriptome annotation and novel sequences
BLAST2GO annotation assigned Gene Ontology (GO) terms and protein

domain identities to 20,913 (64%) sequences with a maximum E-value of 1E-3
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(Supplemental Information 7). A summary of the most abundant gene ontology terms for

biological process, molecular function and cellular component is presented in Fig. 3. As

expected, there was an abundance of transcripts associated with essential processes, such

as metabolism, transcription, translation and protein complexes. In addition, there are

transcripts associated with processes related to the physiological state of stress and disease,

such as response to oxidative stress, death, immune system process, symbiosis, and

response to wounding. Complete KO term and KEGG pathway annotations are provided

as supplementary files (Supplemental Informations 8 and 9, respectively). To assess

transcriptome completeness, a number of other Cnidarian transcriptomes were annotated

in parallel for direct comparisons to the present data set (Table 1). Representation of

metabolic and protein complex pathways for the present reference transcriptome was

similar or slightly lower than data sets for other Cnidarian species. The results indicate
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Figure 2 Frequency distribution of taxonomic identities of best hits to O. faveolata transcripts. BLAST2GO analysis results showing taxonomic

identities of best BLASTx hits to O. faveolata transcripts from SwissProt non-redundant protein sequence database.
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Figure 3 Frequency distribution of selected Gene Ontology (GO) terms annotated to O. faveolata

transcripts. Results of BLAST2GO annotation of O. faveolata transcripts with GO terms. (A) Biologi-

cal process GO terms. (B) Molecular function GO terms. (C) Cellular component GO terms.
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Table 1 KAAS pathway analysis of the O. faveolata reference transcriptome. The following transcript sequence resources were annotated in

parallel using the KEEG KAAS sever and compared to the reference transcriptome reported in the present investigation for O. faveolata: NCBI

Refseq mRNA sequences for N. vectensis and H. magnipapillata (Putnam et al., 2007; Chapman et al., 2010); reference transcriptome sequences for

A. millepora, P. astreoides, A. digitifera, and P. damincornis (Moya et al., 2012; Kenkel, Meyer & Matz, 2013; Shinzato et al., 2011; Traylor-Knowles

et al., 2011); and reference transcriptome sequences reported previously for O. faveolata (Pinzón et al., 2015). The number of transcripts annotated

to each pathway is reported, and the number of transcripts that are unique to the independentO. faveolata transcriptomes is reported in the column

labeled as unique.

Metabolism

N.

vectensis

H.

magnipapillata

P.

astreoides

A.

millepora

A.

digitifera

P.

damicornis

O. faveolata

Present Unique Pinzón

et al.

(2015)

Unique

Glycolysis &

Gluconeogenesis

28 28 29 31 31 32 28 1 31 3

Pentose Phosphate 18 16 17 19 18 17 18 0 19 1

Citrate Cycle 23 22 21 23 21 23 20 0 23 3

Biosynthesis of

Amino Acids

55 42 44 51 49 52 49 1 53 5

Valine, Leucine

and Isoleucine

Degradation

35 34 31 36 38 35 35 1 36 2

Purine Metabolism 101 85 89 106 102 85 95 6 111 21

Fatty Acid Metabolism 27 22 23 26 27 28 24 1 26 3

Pyrimidine Metabolism 69 65 63 73 68 50 63 2 72 11

Protein Complexes

Spliceosome 100 98 93 103 99 94 96 9 101 13

Ribosome 112 102 97 87 113 82 100 2 115 17

Protein Export 20 20 17 20 19 14 20 0 21 1

Oxidative

Phosphorylation

81 62 76 78 81 56 85 11 76 2

RNA Degradation 53 52 41 56 52 42 45 1 54 10

Ubiquitin Proteolysis 84 78 76 95 89 78 84 9 94 18

Stress and Immunity

MAPK 70 77 73 90 88 76 110 28 95 12

Ras 56 57 64 76 74 67 88 20 78 9

Wnt 51 45 50 58 55 52 53 5 60 11

Notch 15 14 19 18 20 17 22 5 18 1

Phagosome 45 43 46 47 49 45 53 9 49 5

Peroxisome 53 39 41 54 53 47 46 2 55 11

Toll-like Receptor 22 22 20 27 23 23 27 3 28 4

Rig-like Receptor 19 18 18 19 19 19 23 2 22 3

Bacterial Invasion 32 30 35 36 37 34 43 8 36 1

Autophagy 15 15 12 15 15 13 13 1 14 2

Apoptosis 21 24 21 27 23 24 27 3 30 5

p53 26 28 21 32 28 26 28 6 29 7

Nod-like Receptor 13 13 18 19 17 18 19 3 19 3

NF-kB 17 18 17 29 20 25 26 8 24 6
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that limited sequencing depth may underrepresent the full repertoire of possible

O. faveolata transcripts. However, the present data set has a number of sequences

associated with immune system-related pathways that are on par with or exceed the other

data sets for Cnidarians (Table 1).

To highlight the unique contributions of the present investigation to the bioinformatic

data available for O. faveolata, an in-depth comparison to the (Pinzón et al., 2015)

O. faveolata transcriptome is presented. The 70,745,177 raw sequence reads from which

the present reference transcriptome is derived is small in comparison to the 387,512,512

raw sequence reads reported by Pinzón et al. (2015). When annotated in parallel, we

estimate that the two projects share 5,618 unique KO terms (79% of total). The present

study contributes 524 unique KO terms (7% of total) and the latter contributes 995

unique KO terms (14% of total). Greater sequencing depth for the (Pinzón et al., 2015)

reveals better coverage of KEGG pathways used conventionally to assess transcriptome

completeness (e.g. metabolic and protein complex pathways) (Table 1). However, the

present reference transcriptome had a greater number of transcripts mapped to the

following stress and immunity-related pathways: MAPK, Ras, Notch, phagosome,

Rig-i-like, bacterial invasion, nuclear factor kappa beta, complement, and leukocyte

migration Pathways (Fig. 4). Therefore, the transcriptome presented here contributes a

considerable number of sequences not reported previously that are associated with

evolutionarily conserved pathways of the innate immune system.

The coral innate immune system
Models of coral immune response to disease are generally characterized by inflammation

that involves the production of antimicrobial peptides and reactive oxygen species, the

production of antioxidants to reduce self-harm, the migration of phagocytic cells to sites

of infection, and the accumulation of melanin to prevent the spread of infection

(Mydlarz et al., 2008; Palmer, Modi & Mydlarz, 2009; Tchernov et al., 2011; Vidal-Dupiol

et al., 2011;Weis, 2008). In the arms race between invading pathogens and the coral host, a

breakdown of host homeostasis leads to the activation of apoptosis and ultimately

tissuemortality (Weis, 2008). Signaling pathways that control the coral immune system can

be organized into 4 levels: (1) pathogen sensing by pattern recognition receptors,

(2) downstream signaling cascades, (3) activation of inflammatory cytokine expression,

Table 1 (continued).

Metabolism

N.

vectensis

H.

magnipapillata

P.

astreoides

A.

millepora

A.

digitifera

P.

damicornis

O. faveolata

Present Unique Pinzón

et al.

(2015)

Unique

PI3K-Akt 72 78 86 97 92 88 99 16 101 17

Complement 2 4 13 9 7 10 13 7 9 3

Cytosolic DNA sensing 19 16 20 24 19 16 21 3 23 5

Leukocyte Migration 31 28 32 32 30 29 38 10 30 2
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4099524 995

Unique to

Trannscriptome

Presented Here

Unique to

Pinzon et al. 2015

Transcriptome

MAPK

Ras

Wnt

Notch

Phagosome

Peroxisome

Toll-like Receptor

Rig-like Receptor

Bacterial Invasion

Autophagy

Apoptosis

p53

Nod-like Receptor

NF-kB

PI3K-Akt

Complement

Cytosolic DNA sensing

Leukocyte Migration

Shared 

28 1282

Total

20 9 68

5 1148

5 117

9 445

2 4411

3 244

3 202

8 351

1 212

3 524

6 722

3 316

8 618

16 1783

7 36

3 518

10 228

Figure 4 Numbers of unique and shared sequences between the present and (Pinzón et al., 2015)

O. faveolata transcriptomes for select immunity-related KEGG pathways. Results from KEGG

KAAS parallel annotation of the present transcriptome and the (Pinzón et al., 2015) transcriptome for

O. faveolata. The number of non-redundant annotations mapped to select KEGG pathways for each

transcriptome are shown.
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and (4) effector mechanisms to lead to survival or death (Palmer & Traylor-Knowles, 2012).

The present investigation provides new data for the study of these pathways inO. faveolata

by revealing components of evolutionarily conserved immune signaling pathways that

regulate immune cell development, migration and host-microbe interactions.

Wnt and Notch pathways in immune cell development, migration
and communication
Gene families, such as Wnt and Notch, have been studied with respect to genome

evolution and larval development in Cnidarians (Käsbauer et al., 2007; Kusserow et al.,

2005; Marlow et al., 2012; Miller, Ball & Technau, 2005; Radtke, Fasnacht & MacDonald,

2010). It is also known that these genes are important regulators of the immune system

through the control of immune cell differentiation, migration and communication

(Duncan et al., 2005; Radtke, Fasnacht & MacDonald, 2010; Staal, Luis & Tiemessen, 2008).

However, few studies have explored hypotheses about the role of Wnt and Notch in coral

immune responses to disease. If one considers that pluripotent, phagocytic immune cells

(i.e. coral amoebocytes) are at the front lines of wound healing and pathogen removal, it is

likely that these genes regulate coral immune responses disease and stress. Therefore,

pathways that have dual roles in the regulation of development and innate immunity

should be researched further. To that end, we report novel members of the Wnt-like

protein family and a complete gene set for the Notch pathway in the O. faveolata

transcriptome.

Wnt proteins are extracellular ligands of transmembrane receptors, Frizzled (FZD) and

low-density Lipoprotein Receptor (LRP), that transduce signals to control the expression

of target genes required for development in a b-catenin-dependent and independent

manner (Gordon & Nusse, 2006; Logan & Nusse, 2004). Components of the Wnt pathway

were first reported for Cnidarians in the species Hydra vulgaris (Hobmayer et al., 2000),

from which time their role in Cnidarian larval development has been studied extensively

(de Jong et al., 2006; Guder et al., 2006; Kortschak et al., 2003; Kusserow et al., 2005; Miller,

Ball & Technau, 2005; Randall & Szmant, 2009; Technau et al., 2005a). Therefore, it is

not surprising that a set of genes putatively involved in Wnt signaling is present in the

O. faveolata transcriptomes (Supplemental Information 10). However, the role of

Wnt-signaling in coral amoebocyte development during migration and differentiation has

not been investigated. A number of Wnt-like predicted protein sequences were identified

by annotation of the reference transcriptomes reported here and by Pinzón et al. (2015).

The parallel annotation of other Cnidarian species identified Wnt-like sequences in the

transcriptomes of the corals Acropora millepora (Kortschak et al., 2003; Moya et al., 2012)

and Acropora digitifera (Shinzato et al., 2011), and the sea anemone, Aiptasia pallida

(Lehnert, Burriesci & Pringle, 2012). Twelve Wnt proteins were originally identified in the

N. vectensis genome (Kusserow et al., 2005). These sequences were included in the

phylogenetic analysis of Wnt sequences to guide homology prediction for Wnt sequences

in the O. faveolata transcriptome (Supplemental Information 11). Seven unique

O. faveolata transcripts are reported here as putative homologues of the following

N. vectensis Wnt proteins: Wnt1, Wnt5, Wnt6, Wnt7, Wnt8, Wnt10, and Wnt11 (Fig. 5).
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The extent to which Wnt protein expression is restricted to specific developmental life

stages or environmental stimuli is not well understood in corals. Therefore, the proteins

described here may only represent a subset of the complete repertoire encoded in the

genome of this species. A complete genome sequence or a reference transcriptome derived

from a more diverse set of tissue types and environmental conditions is required for an

exhaustive assessment of O. faveolata Wnt-like genes. The present study is the first to

characterize O. faveolataWnt-like protein sequences. This new data can be used in future

mechanistic studies on the role that Wnt protein family plays in the coral innate immune

system.

Notch signaling is involved in the regulation of cell identity, proliferation,

differentiation and apoptosis (Gazave et al., 2009). Notch proteins are transmembrane

receptors that detect delta-like ligands expressed on the surface of adjacent cells.

On engagement of its ligand, the intracellular domain of Notch is cleaved and translocates

Wnt 8

.Adig

Wnt 2

Nvec
Apall Ofav

Amill

Adig

Nvec Apall

0.66

0.85

Wnt 10

.
1.00

Nvec

Ofav

Amill
Adig

.. Wnt 7
Nvec

Ofav

Amill

Adig

0.98

Wnt 5

Nvec

Ofav

Amill

Adig

0.87

Wnt 11

.1.00

Nvec

ApallAmillAdigOfav

Wnt 6

.0.71
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Amill
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.0.96

Wnt 1
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Wnt 4

.0.92
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Figure 5 Phylogenetic analysis of Wnt-like protein sequences in O. faveolata transcriptome. Pre-

dicted protein sequences from N. vectensis (Nvec), O. faveolata (Ofav), A. pallida (Apall), A. digitifera

(Adig), and A. millepora (Supplemental Information 11) were used for maximum likelihood phylogeny

estimation with 100 bootstraps.
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to the nucleus where it serves as a transcription factor. Notch receptors have been

described previously for various Cnidarians, including Nematostella, Hydra, and Acropora

(Dunlap et al., 2013; Käsbauer et al., 2007;Marlow et al., 2012;Münder et al., 2010; Technau

et al., 2005a). Inhibition of the Notch pathway was recently shown to disrupt wound

healing in N. vectensis thus establishing a role for Notch in the regulation of innate

immunity (DuBuc, Traylor-Knowles & Martindale, 2014). A role of Notch signaling in

coral immune responses to disease is also supported by an RNA-Seq investigation that

reported the differential expression of a Notch-like gene in response to acute exposure to

bacterial Pathogen Associated Molecular Patterns (PAMPs) (Weiss et al., 2013). A putative

Notch signaling pathway based on the presence or absence of pathway components in the

O. faveolata transcriptome is presented in Fig. 6. This data can be used to investigate the

role of Notch signaling in wound healing and immune responses to disease inO. faveolata.

Intracellular host-microbe interactions
Signaling through innate immune pathways is activated on detection of extracellular

PAMPs by Pattern Recognition Receptors (PRR). PRR-induced signals are transmitted by

Cytosol Cytosol

Intercellular Space

DLL

JAG

NOTC

ADA

FNG

DVLNMBL

DTX

PEN PSN

NICA APH

Nucleus

NOTC
Cleaved Intracellular 

            Domain

RBPJL

SNW

HDAC

CIR

NCOR GROUCHO

HAIRLESS

HES

PTCRA

EP300

MAML

Target Gene 

 Expression

   

Absence or Underrepresentation of Homologues 

in Transriptome

Present in Transcriptome

Positive Interaction

Negative Interaction

Complex

CTBP

Figure 6 Modified O. faveolata Notch signaling pathway from KEGG. Delta-like ligand (DLL), protein jagged (JAG), disintegrin and metal-

loproteinase domain-containing protein 17 (ADA), O-fucosylpeptide 3-beta-N-acetylglucosaminyltransferase (FNG), neurogenic locus Notch

homolog protein (NOTC), numb-like protein (NMBL), segment polarity protein dishevelled homolog (DVL), E3 ubiquitin-protein ligase DTX1

(DTX), presenilin enhancer protein 2 (PEN), nicastrin (NICA), presenilin-1 (PSN), anterior pharynx defective 1 (APH), E1A/CREB-binding

protein (EP300), recombining binding protein suppressor of hairless (RBPJL), SNW domain-containing protein 1 (SNW), C-terminal binding

protein (CTBP), hairless (HAIRLESS), nuclear receptor co-repressor 2 (NCOR), histone deacetylase 1 or 2 (HDAC), CBF1 interacting corepressor

(CIR), groucho (GROUCHO), hairy and enhancer of split 1 (HES), pre T-cell antigen receptor alpha (PTCRA).
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cytosolic kinases, such Mitogen Activated Protein Kinase (MAPK). MAPKs make up a

highly conserved family of protein kinases that regulate immune signaling pathways

(Chen et al., 2001; Schwarz et al., 2008). Signals transmitted by kinases activate pro-

inflammatory gene expression by transcription factors that regulate effector responses,

such as Nuclear Factor Kappa Beta (NF-�B) and Jun (Palmer & Traylor-Knowles, 2012).

A complete prototypical inflammatory signaling cascade has been documented in Hydra

in the context of host-associated microbiota. In this model, PAMP recognition by PRRs,

such as Toll-Like Receptors (TLRs), activates MAPK signaling cascades through

MyD88-dependent phosphorylation of Jun-Kinase (JNK). JNK in turn activates Jun and

leads to the expression of pro-survival factors, such as Bcl-2 (Franzenburg et al., 2012).

In O. faveolata, the expression of genes associated with this pathway has been detected

under conditions of environmental stress (Schwarz et al., 2008; Voolstra et al., 2009).

Mechanistic studies to confirm a functional role for these genes in O. faveolata immune

responses to disease can now be conducted with the use of full-length gene sequences

reported here and by Pinzón et al. (2015).

Host cells can also detect PAMPs associated with intracellular pathogens by Nod-Like

Receptors (NLRs) and Rig-Like Receptors (RLRs) (MacKay, Wang & Kurt-Jones, 2014;

Ting et al., 2008; Yoneyama & Fujita, 2007). NLRs detect components of bacterial cell walls

and RLRs detect cytosolic viral nucleic acids. Various bacterial pathogens of corals,

including the causative agents of CYBD, invade the host cytoplasm (Cervino et al., 2008;

Cervino et al., 2004; Kushmaro et al., 2001). Therefore, NLRs should be investigated in

coral immune responses to infectious disease. Recent investigations have also

demonstrated the important roles that viruses play in pathogenesis and symbiosis (Atad

et al., 2012; Barr et al., 2013; Davy et al., 2006; Soffer et al., 2013; Weynberg et al., 2015;

Wilson et al., 2005). Therefore, RLRs, and the related dicer-like protein family, should be

investigated to elucidate their role in the control of host interactions with symbiotic,

commensal and pathogenic viruses. To support future studies along these lines, the

present investigation identifies components of NLR, RLR and Dicer signaling pathways

present in the O. faveolata transcriptome.

Nod-like receptors and intracellular bacterial detection
The NLR protein family has conserved roles in regulating innate immunity through the

recognition of intracellular bacteria by Leucine-Rich Repeat (LRR) domains. LRR domains

are also hallmarks of membrane-bound TLRs, however, NLRs are located exclusively in the

cytoplasm (Ting et al., 2008). After pathogen recognition, NLRs can promote caspase-

mediated cell death through the macromolecular assembly of the inflammasome, which

converts inactive procaspase to active caspase by proteolysis. Caspase-mediated cell death

has been reported in corals and Cnidarians and has been described in depth by multiple

reviews (Cikala et al., 1999; Lasi et al., 2010; Tchernov et al., 2011;Weis, 2008). Alternatively,

NLRs can mediate inflammation through the aforementioned MAPK, JNK, or NF�B

pathways. Genes homologous to NLRs have been identified in basal metazoans including

Hydra,Nematostella, Acropora, Amphimedon (Augustin, Fraune & Bosch, 2010; Bosch, 2012;

Hamada et al., 2013; Yuen, Bayes & Degnan, 2014). In the Hydra model system, there is
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evidence to support a role for NLR in bacterial detection and caspase activation (Bosch

et al., 2011; Lange et al., 2011). Therefore, it is not surprising that we also identified NLR

homologues in the O. faveolata transcriptomes. A putative O. faveolata NLR signaling

pathway is constructed to guide future investigations on coral immune responses to

intracellular bacterial pathogens (Fig. 7).
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Figure 7 Modified O. faveolata NLR signaling pathway from KEGG. NLR family CARD domain-

containing protein 4 (NLRC), NACHT, LRR and PYD domains-containing protein 3 (NLRP3),

suppressor of G2 allele of SKP1 (SUGT1), receptor-interacting serine/threonine-protein kinase 2

(RIPK2), mitogen-activated protein kinase kinase kinase 7 (TAK), TAK1-binding protein 1 (TAB), c-Jun

N-terminal kinase (JNK), mitogen-activated protein kinase 1 or 3 (ERK), p38 MAP kinase (p38),

inhibitor of nuclear factor kappa-B kinase subunit gamma (IKKg), inhibitor of nuclear factor kappa-B
kinase subunit alpha (IKKa), nuclear factor kappa beta (Nf�b), TNF receptor-associated factor 6

(TRAF), Caspase (CASP), baculoviral IAP repeat-containing protein (BIRC), tumor necrosis factor

alpha-induced protein 3 (A20).
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Detection of viral nucleic acids
To date, interactions between the coral host and associated microbes have largely focused

on coral-fungal and coral-bacterial interactions (Kim et al., 2000; Kvennefors et al., 2008;

Sutherland, Porter & Torres, 2004). However, viruses have emerged as important members

of the coral holobiont and can have beneficial or harmful affects on the coral host

(Van Oppen, Leong & Gates, 2009,Weynberg et al., 2015). While bacteriophages have been

demonstrated to eradicate coral pathogens and prevent infection (Barr et al., 2013;

Efrony et al., 2007), herpes-like viruses have been associated with virulent coral diseases

(Soffer et al., 2013; Thurber et al., 2008). Therefore, recognition of viruses and regulation of

their activities by the coral immune system is hypothesized to be essential in maintaining

homeostasis.

Dicer-like proteins, which share protein domains with RLRs, are essential members of

the Micro RNA (miRNA) and Small Interfering RNA (siRNA) pathways. They have only

recently gained attention in corals, and they may have conserved roles in antiviral

immunity (Liew et al., 2014; MacKay, Wang & Kurt-Jones, 2014; Moran et al., 2013).

The present study identifies full-length Dicer-like proteins and the essential components

for siRNA and miRNA signaling in the O. faveolata transcriptomes (Fig. 8). The
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Figure 8 Domain architecture of dicer-like protein sequences derived from the O. faveolata transcriptome. (A) Hmmscan analysis of protein

domain architecture for O. faveolata predicted protein sequences. Dicer-like protein with similar domain architectures are also shown

(Supplemental Information 12) (B) miRNA and siRNA pathway components present in the O. faveolata transcriptome.
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ATP-dependent RNA helicase DDX58 (RIG-I), interferon-induced helicase C domain-containing pro-

tein 1 (MDA5), dihydroxyacetone kinase (DAK), ATP-dependent RNA helicase DHX58 (DHX58),

autophagy-related protein 5 (ATG5), autophagy-related protein (ATG12), Nod-like receptor (NLR),

mitochondrial antiviral-signaling protein (MAVS), transmembrane protein 173 (STING), TNF recep-

tor-associated factor 3 (TRAF), mitogen-activated protein kinase kinase kinase 7 (TAK), TAK1-binding

protein 1 (TAB), c-Jun N-terminal kinase (JNK), mitogen-activated protein kinase 1 or 3 (ERK),

p38 MAP kinase (p38), nuclear factor kappa beta (NFKB), mitogen-activated protein kinase kinase

kinase 1 (MAPK).
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dicer-like protein sequences used in this study are provided in a supplementary file

(Supplemental Information 12). RLRs have evolutionarily-conserved roles in recognition

of viral nucleic acids (Loo & Gale, 2011; Mukherjee, Korithoski & Kolaczkowski, 2014;

Zou et al., 2009). Homologues of RLR-like genes have been reported for Nematostella in

studies of RLR evolution from basal metazoans to chordates (Zou et al., 2009), but their

function has not been investigated in Cnidarians. TheO. faveolata reference transcriptome

has many of the evolutionarily conserved components required for RLR signaling, and a

putative pathway is presented in Fig. 9 to guide future research on coral immune

responses to viral infection.

CONCLUSIONS
The present investigation expands the bioinformatic resources available for the Caribbean

reef-building coral, O. faveolata. Putative immunity genes in the coral transcriptome were

identified by annotation with gene ontologies and KEGG orthologies. It is well established

that Wnt-like proteins are important in coral larval development, but their role in

immune cell development and migration remains largely uninvestigated. Phylogenetic

analysis of Wnt-like predicted proteins sequences revealed seven novel family members in

the O. faveolata transcriptome, which can be used to guide future research on their

function in coral innate immunity. Components of the Notch, Nod-like, Dicer-like, and

Rig-like signaling pathways reveal possible mechanisms for host cell communication,

wound healing, intracellular bacterial and viral recognition. The results of the present

investigation provide new data to advance the field of coral innate immunity, which has

the ultimate goal of understanding the biological mechanisms that confer resistance or

susceptibility of corals to climate-driven stress events and disease outbreaks.
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Vidal-Dupiol J, Zoccola D, Tambutté E, Grunau C, Cosseau C, Smith KM, Freitag M,
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